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The chaotic mixing of miscible liquids in gas-segmented serpentine channels is studied computationally
in a two-dimensional setting. Passive tracer particles are used to visualize and quantify the mixing. The
molecular diffusion is ignored and only the mixing due to chaotic stirring is considered. Mixing is quan-
tified using the entropy and intensity of segregation measures. The effects of various non-dimensional
parameters on the quality of mixing are investigated and it is found that the relative bubble size, the cap-
illary number and the non-dimensional channel corrugation length are the most important parameters
influencing the mixing. The mixing is found to be weakly dependent on Reynolds number and nearly
independent of viscosity ratio.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Rapid mixing of fluids in microchannels is an important but
challenging problem in modern engineering applications such as
nanoparticle synthesis, enzyme reactions, drug delivery, DNA anal-
ysis and protein folding (Shui et al., 2007; Stone et al., 2004). The
flows are usually highly laminar and thus mixing is notoriously dif-
ficult in such channels. Due to absence of turbulence, the mixing
mainly relies on molecular diffusion that is usually insufficient to
mix fluids across the channel on the time scale of the usual resi-
dence time. Mixing is especially difficult for solutions containing
large molecules that have lower diffusion coefficients than those
of ordinary small molecules (Stone et al., 2004). Therefore mixing
enhancement has become an important research area and a num-
ber of active and passive enhancement techniques have been
developed for this purpose. Nearly all the mixing enhancement
methods are based on the concept of chaotic stirring of miscible
fluids (Aref, 1984). External actuation methods such as electro-
capillary, termocapillary and acoustic actuation are examples of
the active mixing methods (Stone et al., 2004) whereas settling
multiphase flows (Garstecki et al., 2005; Gunther et al., 2005)
and using patterned channel walls (Kang et al., 2007) are ways of
passive enhancement. Here we computationally study the chaotic
mixing in liquid slugs moving through gas-segmented serpentine
channels drawing inspiration from the microfluidic devices devel-
oped by the Jensen’s group for chemical synthesis (Guenther et al.,
2004; Gunther et al., 2005; Khan et al., 2004; Yen et al., 2005) and
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biofluidic applications (El-Ali et al., 2005). The micromixer devel-
oped by Garstecki et al. (2005, 2006) also utilizes the gas bubbles
to cause chaotic mixing in the host liquid but its working principle
is based on the additional pressure drop caused by the existence of
the gas bubble. The two-dimensional model serpentine channel
used in the present study is shown in Fig. 1.

The inserted gas phase segments the liquid into small, isolated
slugs and acts as a barrier between them due to the gas–liquid
interfacial tension. The insertion of bubbles creates recirculation
within the liquid slugs and induces additional pressure drop in
the channel. In the case of a straight channel, there are two sym-
metrical and counter rotating steady vortices within the liquid slug
in the reference frame moving with the centroid of the slug. There-
fore there is no cross mixing in straight channel in the absence of
molecular diffusion as discussed by Yu et al. (2007). However, this
vortex symmetry is broken in the case of the curved channel. That
is, the vortex at the top is larger than the vortex at the bottom
when the channel is concave down and it is reversed when the
channel is concave up. In the case of a serpentine channel, the large
and small vortices switch positions periodically as the bubbles
move through the channel as sketched in Fig. 2. This is the under-
lying physical mechanism causing chaotic stirring in the gas-seg-
mented microchannels (Guenther et al., 2004; Gunther et al.,
2005). The segmentation of the channel reduces axial dispersion
significantly and only dispersion occurs due to either convection
through liquid film between channel wall and gaseous phase or
diffusion through the gas–liquid interface. In addition, the tempo-
ral variation of pressure distribution induced by the bubbles leads
to stretching and folding of the continuous fluid in segmented flow
(Garstecki et al., 2005). Hence the usage of immiscible phases
reduces the axial dispersion and enhances the chaotic mixing
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Fig. 1. The sketch of the model serpentine channel. The volume flow rate per unit
width into the page is specified at the inlet based on a fully developed channel flow
and the pressure is fixed at the exit. The flow is initialized as a single-phase steady
flow using the ambient fluid properties and cylindrical bubbles are then placed
instantaneously in the ambient flow. The tracer particles are initially distributed
uniformly outside the bubbles at random and the particles filling the lower part of
the channel are used for visualization.
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(Yen et al., 2005). Gas–liquid segmentation is preferable to single-
phase flow due to enhanced mixing and narrower residence time
distributions (Yen et al., 2005). Also, it has advantages over li-
quid–liquid segmentation due to (i) having larger range of reaction
time scales, (ii) easier methods of separation of phases after mixing
and (iii) wider range of reaction temperature (Yen et al., 2005).

The chaotic streamline patterns in Stokes flows have been subject
of a wide range of theoretical study in various geometries such as
annular wedge (Krasnopolskaya et al., 1999), rectangular (Gaskell
et al., 1998) and cylindrical (Meleshko et al., 2000) cavities. Similar
studies have been also carried out for two-phase flows including
liquid–liquid and gas–liquid systems (Bajer and Moffat, 1990; Krouj-
iline and Stone, 1999; Stone et al., 1991). The acquisition in this area
yields to find out details of chaotic mixing inside droplets (Stone
and Stone, 2005). Song et al. (2003) have shown that the reagents in
a droplet can be mixed rapidly as the liquid drop moves through a
winding channel. Muradoglu and Stone (2005) have investigated
the chaotic mixing in a drop and studied the effects of capillary num-
ber, viscosity ratio, relative drop size and channel curvature. In this
paper, we computationally investigate the chaotic mixing within
liquid slugs segmented by an immiscible gaseous phase in curved
channels using a similar computational setting employed by Murado-
glu and Stone (2005) for studying chaotic mixing in viscous droplets.

The model winding channel used in this study consists of cocen-
tric circular arcs connected sequentially to form three periods as
sketched in Fig. 1. In the reference frame moving with the centroid
of the liquid slug, the velocities at the inner and outer wall can be
approximated in the limit of a vanishing capillary number by
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Fig. 2. The liquid slug between gas bubbles moving through curved channel resembles
treated as if the slug is stationary and the top and bottom channel walls are moving. (a) S
the serpentine channel (top) and representative sketches for the corresponding lid-driv
V top ¼ 2ð1þ bÞVb=ð2þ bÞ and Vbottom ¼ 2Vb=ð2þ bÞ, respectively
(Muradoglu and Stone, 2007). Here Vb is the steady bubble velocity
and b ¼ dc=Ri is the non-dimensional curvature of the inner wall
with dc being the channel width, Ri the radius of the curvature of
inner channel wall. As a result, the flow in the slug resembles a
double-lid-driven cavity flow as sketched in Fig. 2. This analogy
also indicates that the difference between the lid velocities and
thus the mixing within the liquid slug increases with increasing
channel curvature. In the case of a serpentine channel, the top
and bottom lid velocities alternate periodically inducing unsteady
and chaotic flow within the liquid slug and thus leading to rapid
mixing of the solutions (Ottino, 1989). Gaskell et al. (1998) ob-
tained an eigenfunction expansion solution of streamlines in a
double-lid-driven cavity flow with free-surface side walls within
a rectangular domain. When the lid velocities alternate time-peri-
odically, the physical problem studied by Gaskell et al. (1998) be-
comes analogous to our problem but still not one to one
correspondence since interactions between gas phase and liquid
slug are not linear in the present problem. Therefore a model built
on the Gaskell’s solution would yield no dispersion between fol-
lowing liquid slugs as they are fully blocked by rectangular shaped
bubbles in the channel. In addition these no-shear walls get closer
in the segmented flow near the centerline of the winding channel,
so the fluid volume near the middle of liquid slug is pushed to-
wards the moving lids and thus recirculation is strengthened. Note
that the secondary flow occurs in the three-dimensional meander-
ing square channels and induces transverse recirculation in addi-
tion to longtitudinal recirculation. This transverse recirculation
enhances mixing and thus heat and mass transfer in a microchan-
nel as studied by Ahn et al. (2008).

In the present study, the mixing within the liquid slugs moving
through a gas-segmented winding channel is studied computation-
ally using the finite-volume/front-tracking (FV/FT) method
developed by Muradoglu and Kayaalp (2006) in a simple
two-dimensional setting in order to facilitate extensive numerical
simulations. The molecular mixing is ignored and only mixing due
to chaotic advection is considered. The mixing is visualized with
passive tracer particles and is quantified in the same way as done
by Muradoglu and Stone (2005). The effects of the relevant non-
dimensional parameters such as the capillary number, Reynolds
number, density and viscosity ratios and various geometrical
gas
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a lid-driven cavity flow in the limit of vanishing capillary number. The flow can be
ketch for the lid-driven cavity flow. Concave up (b) and concave down (c) portions of
en cavity flows (bottom).
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parameters related to bubble size, slug length and channel corru-
gation wavelength are studied in details.

The organization of this paper is as follows: in Section 2, the
mathematical formulation and computational method are dis-
cussed briefly. The physical problem is described and the tech-
niques used for visualization and quantification of mixing are
explained in Section 3. The results are presented and discussed
in Section 4 and concluding remarks are summarized in Section 5.

2. Formulation and numerical method

The governing equations are described in this section in the
form suitable for the front-tracking method. This method is based
on a single-field formulation of flow equations for the entire com-
putational domain and different phases are treated as a single
Newtonian fluid with variable material properties (Tryggvason
et al., 2001; Unverdi and Tryggvason, 1992). The effects of surface
tension are treated as body forces and added to the momentum
equations as d functions at the phase boundaries. Following Mura-
doglu and Gokaltun (2004) and Muradoglu and Kayaalp (2006), the
two-dimensional incompressible continuity and Navier–Stokes
equations can be written in conservation form as
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In Eqs. (1)–(3), x and y are the Cartesian coordinates and t is the
physical time; q, l and p are the fluid density, the dynamic viscosity
and pressure, respectively; and u and v are the velocity components
in x and y coordinate directions, respectively. The first row in Eq. (1)
simply states that the velocity field is solenoidal while the last two
rows represent the momentum conservation equations in x and y
directions, respectively. The viscous stresses appearing in the vis-
cous flux vectors are given by

sxx ¼ 2l @u
@x
; syy ¼ 2l @v

@y
; sxy ¼ l @u

@y
þ @v
@x

� �
: ð4Þ

The last term in Eq. (1) represents the body forces resulting from
surface tension and is given by

fb ¼
Z

S
rjndðx� xf Þds; ð5Þ

where d;xf ;r;j and n denote, respectively, the Dirac delta function,
the location of the interface, the surface tension coefficient, twice
the mean curvature, the outward unit normal vector on the inter-
face, and the integral is taken over the surface area of the interface,
S.

In Eq. (1), it is assumed that the density and viscosity of a fluid
particle remain constant, i.e.,

Dq
Dt
¼ 0;

Dl
Dt
¼ 0; ð6Þ

where the substantial derivative is defined as D
Dt ¼ @

@t þ u � r.
The governing equations (Eq. (1)) are solved by the finite-vol-

ume/front-tracking method developed by Muradoglu and Kayaalp
(2006). The method combines a finite-volume solver with the
front-tracking method developed by Unverdi and Tryggvason
(1992). The continuity and momentum equations are solved on a
curvilinear grid using a finite-volume method. The spatial deriva-
tives are approximated by a finite-volume method that is equiva-
lent to second-order finite differences on a regular mesh. A dual
(or pseudo) time-stepping method is employed to achieve time
accuracy and an alternating direction implicit (ADI) method is used
to perform integration in pseudo time. Fourth-order numerical dis-
sipation terms are added to the discrete version of the flow equa-
tions to prevent the odd–even decoupling. Preconditioning, local
time-stepping, and multigrid methods are used to accelerate the
convergence rate of the ADI method in the pseudo time. Details
of the FV method can be found in references (Muradoglu and Kay-
aalp, 2006; Caughey, 2001).

The interface boundary between the bubble and the ambient
fluid are represented by connected Lagrangian marker points mov-
ing with the local flow velocity interpolated from the neighboring
curvilinear grid nodes. The communication between the curvilin-
ear grid and the interface marker points is maintained efficiently
using an auxiliary regular Cartesian grid cast on the curvilinear grid
(Muradoglu and Kayaalp, 2006). An indicator function is defined
such that it is unity inside the bubbles and zero outside. Based
on the locations of the interface marker points, unit magnitude
jumps are distributed in a conservative manner on the regular grid
points near the interface and are integrated to compute the indica-
tor function everywhere. This procedure involves solution of a
Poisson equation on a regular grid and yields a smooth transition
of the indicator function across the interface. The indicator func-
tion is then interpolated from the regular Cartesian grid onto the
curvilinear grid using bilinear interpolations. Once the indicator
function distribution is determined, the viscosity and density are
set as a function of the indicator function. The interface marker
points are also used to compute the surface tension forces at the
interface which are then distributed on the neighboring curvilinear
grid cells in a conservative manner and added to the discrete
momentum equations as source terms. The numerical method is
essentially the same as that used by Muradoglu and Stone
(2005), and the readers are referred to Muradoglu and Kayaalp
(2006) and Muradoglu and Gokaltun (2004) for the details.
3. Problem statement and quantification of mixing

3.1. Problem statement

The chaotic mixing within a liquid slug moving through a gas-
segmented serpentine channel is studied in a two-dimensional set-
ting. The model channel consists of a straight entrance, a curved
mixer of three periods and a straight exit section as sketched in
Fig. 1. The curved section of the mixer consists of cocentric circular
arcs, the inner circle of a half period connects tangentially with the
outer circle of the next half period. As discussed before, the flow
field within the liquid slug moving through a curved channel
resembles a double-lid-driven cavity flow with free-surface side
walls (gas–liquid interface) and recirculation occurs due to motion
of the walls and segmentation of liquid. The ratio of lid velocities is
dependent on the channel curvature and thus the lid velocities
switch when the channel curvature changes. Consequently,
streamline patterns are antisymmetric with respect to centerline
(see Fig. 2) and they cross each other over half periods, thus flow
is time-dependent. The non-dimensional parameter j ¼ dc=L is
used to characterize the geometry. The smaller the values of j
the weaker is the winding of the mixing section. The flow rate is
specified at the inlet of the channel assuming a fully developed
velocity profile with an average flow velocity of Vc . A steady



Fig. 3. A portion of a typical computational (coarse) grid containing 864 � 32 cells.
Computations are performed on finer versions of this grid, e.g., containing
1728 � 64 cells.
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single-phase flow is computed first using the ambient fluid (liquid)
properties and is then used as the initial conditions. The bubbles
Fig. 4. Snapshots of mixing patterns for a two-bubble system taken at the non-dimensiona
plots are the enlarged versions of the corresponding scatter plots shown in the channel
grid: 1728 � 64.)

Fig. 5. Effects of capillary number ðCaÞ on mixing. The mixing patterns at the exit of the c
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Fig. 6. Effects of the capillary number on mixing. (a) Intensity of segregation (b) entr
are instantaneously placed in the channel close to the inlet. The
bubble size is specified much larger than the channel width and
are initialized with an approximate steady shape consisting of a
straight middle and a semicircular back and front sections. The
properties of the bubble phase and ambient fluid are denoted by
subscripts ‘‘i” and ‘‘o”, respectively. The governing non-dimen-
sional parameters are defined as the channel Reynolds number
Re ¼ qoVcdc=lo, the capillary number Ca ¼ loVc=r, the viscosity
ratio k ¼ li=lo, the density ratio r ¼ qi=qo, the ratio of initial dis-
tance between bubbles to the channel width at the inlet
g ¼ Ld=dc and the ratio of the equivalent bubble diameter ðdbÞ to
the channel width K ¼ db=dc . Based on the inlet velocity and the
corrugation wave length, the non-dimensional physical time is de-
fined as t� ¼ tVc=L.

Passive tracer particles are initially distributed uniformly at
random in the channel outside of the bubbles and the particles
occupying the lower half of the channel are identified as ‘‘red”
while the other particles are ‘‘blue”. Note that only the particles
that initially occupy the lower half of the channel are used in all
the scatter plots presented in this paper. The tracer particles are
l times from left to right t� ¼ 0;5;11;16;21:5;27;32:5 and 38:5, respectively. The top
(lower plots). (Ca ¼ 0:005;Re ¼ 0:64; k ¼ 0:014;K ¼ 2:0;g ¼ 0:75;j ¼ 0:125; r ¼ 0:1,

hannel. (Re ¼ 0:64; k ¼ 0:014;K ¼ 2:0;g ¼ 0:75;j ¼ 0:125; r ¼ 0:1, grid: 1728 � 64.)
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centroid, x=L ¼ 2:5 and x=L ¼ 3:5. The best mixing occurs at about Ca ¼ 0:005.
(Re ¼ 0:64; k ¼ 0:014;K ¼ 2:0;g ¼ 0:75;j ¼ 0:125; r ¼ 0:1, grid: 1728 � 64.)
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introduced into channel when the bubbles take their steady shapes
in the inlet section of the channel. The particles are moved with the
local flow velocity interpolated from the neighboring computa-
tional grid points using the same advection scheme as used for
moving the interface marker points.

Finally we complete the specification of the geometry by fixing
Li, the length of the inlet portion of the channel, Le, the length of the
exit portion of the channel, and Lm, the length of the mixing portion
of the channel as sketched in Fig. 1.
Fig. 8. Effects of the non-dimensional bubble size on the mixing. The mixing patterns at
(Ca ¼ 0:005;Re ¼ 0:64; k ¼ 0:014;g ¼ 0:75;j ¼ 0:125; r ¼ 0:1, grid: 1728 � 64.)
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Fig. 9. Effect of bubble size on mixing. (a) Intensity of segregation (b) entropy. (C
3.2. Quantification of mixing

The mixing is visualized and quantified in a similar way as done
by Muradoglu and Stone (2005). The tracer particles are used to
visualize the mixing patterns within the liquid slugs and entropy
and intensity of segregation measures are used to quantify the
quality of mixing (Krasnopolskaya et al., 1999; Muradoglu and
Stone, 2005). For this purpose, the liquid slug area Ss is divided into
Nd square pixels of width size d for a side with an area of Sd ¼ d2 so
that the slug area can be written approximately as Ss ffi NdSd. Note
that the slug area is defined as the area occupied by liquid between
centroid of bubbles. Then a coarse-grained probability density

function is defined as Dn ¼
NðnÞ

b

NðnÞ
b
þNðnÞr

, where NðnÞb and NðnÞr are the num-

ber of ‘‘blue” and ‘‘red” tracer particles in the nth pixel, respectively.
Based on the coarse-grained density, the entropy of the mixture is
defined as

s ¼ �hD log Di: ð7Þ

The entropy is always positive since 0 < D < 1 and grows in time to
its maximum

so ¼ � lim
t!1
hD log Di ¼ �hDi loghDi; ð8Þ

when the fluids in the slug are fully mixed. In all the results pre-
sented in this study, the entropy is normalized by so. Finally, the
intensity of segregation is defined as

I ¼ hðD� hDiÞ
2i

hDið1� hDiÞ : ð9Þ

In the case of complete mixing, the intensity of segregation tends to
zero since the quantity hðD� hDiÞ2i tends to zero. The quality of
mixing denoted by Q can be defined as the inverse of the intensity
the exit of the channel for K ¼ 2:0;1:5;1:0 and 0.75 from left to right, respectively.
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Fig. 10. The intensity of segregation against the non-dimensional bubble size at
times when slug centroid, x=L ¼ 2:5 and x=L ¼ 3:5. The mixing is essentially
independent of the bubble size when K P 1. (Ca ¼ 0:005;Re ¼ 0:64; k ¼ 0:014;g ¼
0:75;j ¼ 0:125; r ¼ 0:1, grid: 1728 � 64.)

Fig. 11. Effects of viscosity ratio on the mixing. The mixing patterns at the exit of the
channel for k ¼ 0:014; 0:1 and 1. (Ca ¼ 0:005;Re ¼ 0:64;K ¼ 2:0;g ¼ 0:75;j ¼
0:125; r ¼ 0:1, grid: 1728 � 64.)
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of segregation, i.e., Q ¼ 1=I. However, following Muradoglu and Stone
(2005), the intensity of segregation is preferred in the present study
over the mixing quality since it varies between zero and unity. Details
of the entropy and segregation of intensity measures can be found in
Krasnopolskaya et al. (1999), Muradoglu and Stone (2005).
4. Results and discussion

In this section, the computational results for mixing in liquid
slugs between large bubbles moving through a serpentine channel
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Fig. 12. Effect of the viscosity ratio on mixing. (a) Intensity of segregation (b) entrop
are presented. The problem is studied in a two-dimensional setting
in order to facilitate extensive numerical simulations. The overall
structure of a typical (coarse) computational grid with 864 � 32
cells is shown in Fig. 3. Computations are performed on finer ver-
sions of this grid containing 1728 � 64 cells unless specified other-
wise. The grid is stretched near the solid wall in order to resolve
the liquid film between the bubble and the channel. A extensive
grid convergence study is not repeated here since this grid resolu-
tion has been shown to be sufficient to obtain grid independent re-
sults for this kind of problems (Muradoglu and Stone, 2005, 2007;
Muradoglu et al., 2007). The density ratio is kept constant at
r ¼ 0:1 in all the results presented here. Note that density has no
significant effect in the low-Reynolds number flow as studied here.

First the evolution of mixing patterns in a liquid slug moving
through the model serpentine channel is presented. Then the ef-
fects of the non-dimensional parameters such as the capillary
number ðCaÞ, the non-dimensional bubble size ðKÞ, the viscosity ra-
tio ðkÞ, the Reynolds number ðReÞ, the relative initial distance be-
tween bubbles ðgÞ and non-dimensional corrugation wavelength
of the mixing section ðjÞ are examined. Scatter plots of the tracer
particles are used to visualize the mixing patterns in the liquid slug
and only the particles initially occupying the lower part of the
channel are plotted in ‘‘black” for visual clarity. The particles cross-
ing the bubble interface due to numerical error are reflected back
into the liquid phase in the same was as done by Muradoglu
et al. (2007). Some particles leak through the liquid film between
the bubble and channel wall even in the absence of the molecular
diffusion since the liquid film thickness changes periodically
depending on the channel curvature as pointed out by Muradoglu
and Stone (2007). The particles that leak through the liquid film are
simply disregarded in the present results. In computing the inten-
sity of segregation and entropy, the total number of tracer particles
is initially set to 85,000 and the pixel size is determined such that
there are about 10 particles in each pixel.

The snapshots of the tracer particles within the liquid slug are
plotted in Fig. 4 at non-dimensional times of t� ¼ 0;5;11;16;
21:5;27;32:5 and 38.5 to demonstrate the evolution of the mixing
patterns as the slug moves through the model gas-segmented
winding channel. The simulation is performed for the non-dimen-
sional parameters of Ca ¼ 0:005;Re ¼ 0:64;K ¼ 2; k ¼ 0:014;g ¼
0:75;j ¼ 0:125, and r ¼ 0:1. This case is taken as the base case
and the effects of the non-dimensional parameters are examined
by systematically varying them one at a time. Note that typical
values used in experiments (Gunther et al., 2005) are
qo ’ 789 kg=m3;qi ’ 1:16 kg=m3;lo ’ 1:19� 10�3 N s=m2;li ’
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1:76� 10�5 N s=m2;Uo ’ 5:5 mm=s;dc ’ 22:4� 10�5 m and r ’
0:023 N=m, which yields a Reynolds number approximately
Re ’ 0:7, a capillary number Ca ’ 0:0003 and a viscosity ratio
k ’ 0:015. We note that the present simulations are performed
for larger capillary numbers than this typical experimental value
due to numerical difficulty to resolve the liquid film between the
gas bubble and the channel wall at very small capillary numbers.
The liquid film thickness hliquid scales as hliquid=dc � Ca�2=3 (Brether-
ton, 1961; Muradoglu and Stone, 2007) and becomes extremely
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Fig. 14. Effects of Reynolds number on mixing. The mixing patterns at the exit of
the channel for Re ¼ 0:64;6:4 and 64. (Ca ¼ 0:005; k ¼ 0:014;K ¼ 2:0;g ¼ 0:75;j ¼
0:125; r ¼ 0:1, grid: 1728 � 64.)
thin at small values of the capillary numbers. In addition, it is suf-
ficient to keep the capillary number Ca 6 0:01 to achieve segmen-
tation and further decrease in the capillary number beyond this
value does not affect the quality of mixing significantly as will be
discussed below. The mixing patterns are enlarged in the top plots
of Fig. 4 to better show the details of the mixing process. It is clear
that chaotic advection occurs in a liquid slug as it moves through
the winding channel.

We now present effects of the non-dimensional parameters on
the quality of mixing. First the effects of the capillary number is
examined. For this purpose, the mixing patterns are plotted in
Fig. 5 at the exit of the channel for capillary numbers
Ca ¼ 0:0025;0:005; 0:01;0:02 and 0:08 while the other parameters
are kept constant at the base values. As can be seen in this figure,
the mixing increases as the capillary number is decreased. The ef-
fects of the capillary number are quantified in Fig. 6 where the
intensity of segregation and entropy are plotted as a function of
the non-dimensional x-component of the centroid of the liquid
slug, x=L. The intensity of segregation is also plotted against Ca in
Fig. 7 at times when x=L ¼ 2:5 and x=L ¼ 3:5. These figures show
that the mixing is very poor for Ca ¼ 0:08 and increases rapidly
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Fig. 17. The mixing patterns at the exit of the channel as a function of the initial distance between bubbles. (Ca ¼ 0:005;Re ¼ 0:64; k ¼ 0:014;K ¼ 2:0;j ¼ 0:125; r ¼ 0:1, grid:
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as Ca decreases until Ca ¼ 0:01 but then the mixing is essentially
unaffected by further decrease in the capillary number. For large
capillary numbers, segmentation does not occur due to extreme
deformability of the bubbles, and thus the mixing is poor. Once
the segmentation occurs, the further decrease in capillary number
does not improve the quality of mixing dramatically. It is also ob-
served in Fig. 6 that each of the scalar measures such as the inten-
sity of segregation and the entropy are consistent in representing
the quality of mixing as also reported by Muradoglu and Stone
(2005).

We next examine the effects of the relative bubble size on mix-
ing. The non-dimensional bubble size is defined as the ratio of the
equivalent diameter of the bubble to the channel width and its ef-
fects on the mixing are first presented in terms of the scatter plots
in Fig. 8. The computations are performed for the relative bubble
sizes of K ¼ 2:0;1:5;1:0 and 0:75 while the other parameters are
the same as those of the base case. The scatter plots are taken in
the exit section of the channel, i.e., at x=L ¼ 3:5. It is clearly seen
from the figure that segmentation occurs when the bubble size is
equal or larger than the channel width and the mixing quality is
not sensitive to bubble size when K P 1. This is also verified by
the intensity of segregation and entropy measures plotted in
Fig. 9. The intensity of segregation is plotted against K in Fig. 10
at times when the non-dimensional component of slug centroid,
x=L ¼ 2:5 and x=L ¼ 3:5. Figs. 5–10 indicate that the mixing quality
is critically dependent on the segmentation and the chaotic advec-
tion occurs when the segmentation is achieved.

The effects of the viscosity ratio on the mixing are shown in
Figs. 11–13. The mixing patterns in the exit section of the channel
are plotted in Fig. 11 and the mixing is quantified in Fig. 12 for the
viscosity ratios of k ¼ 0:014;0:1; and 1.0. In addition, the intensity
of segregation is plotted against k in Fig. 13 at times when the non-
dimensional component of slug centroid, x=L ¼ 2:5 and x=L ¼ 3:5.
These figures indicate that the viscosity ratio is not a prime factor
affecting the quality of mixing in liquid slugs as long as the
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Fig. 18. Effect of the initial distance between bubbles on mixing. (a) Intensity of segrega
1728 � 64.)
segmentation is achieved. This is in contrast with the mixing inside
a droplet moving through a serpentine channel where the viscosity
ratio was found to be one of the main factors determining the qual-
ity of the mixing (Muradoglu and Stone, 2005).

The Reynolds number is typically small in flows in microchan-
nels as studied here. Nevertheless the effects of the Reynolds num-
ber are examined here for completeness. For this purpose,
Reynolds number is varied between Re ¼ 0:64 and Re ¼ 64 while
the other parameters are set to the same values as used in the base
case. Fig. 14 shows the mixing patterns in the exit section of the
channel. This figure qualitatively illustrates that the quality of mix-
ing is weakly dependent on the Reynolds number and mixing im-
proves slightly as the Reynolds number increases. This observation
is verified in Fig. 15 where the intensity of segregation and entropy
are plotted as a function of x-component of the centroid of the li-
quid slug. In addition, the intensity of segregation is plotted against
Re in Fig. 16 at times when x=L ¼ 2:5 and x=L ¼ 3:5. These figures
clearly show that the quality of mixing increases slightly as the
Reynolds number decreases. This result is consistent with the re-
sults obtained for the mixing in the droplet moving through a ser-
pentine channel (Muradoglu and Stone, 2005).

Finally, we examine the effects of the geometric parameters on
the quality of mixing in the liquid slugs. For this purpose, compu-
tations are performed for the various values of the relative distance
between the bubbles ranging between g ¼ 2 and g ¼ 0:375 and the
mixing patterns are plotted in Fig. 17. This figure shows that the
best mixing is achieved about g ¼ 0:75, i.e., in the base case. This
observation is quantified and verified in Fig. 18 through the inten-
sity of segregation and entropy measures and also in Fig. 19 where
the intensity of segregation is plotted against g at times when
x=L ¼ 2:5 and x=L ¼ 3:5. Recirculation within the liquid slug be-
comes weaker as g increases, thus some unmixed islands appear
as can be seen, for instance, in Fig. 17 for g ¼ 2:0: Another impor-
tant geometric parameter is the corrugation wavelength of the
channel normalized by the channel width. We finally present the
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effects of channel corrugation wavelength on the quality of mixing
in Figs. 20–22. The computations are performed for the corrugation
wavelengths of j ¼ 0:125;0:2 and 0:285 while the other parame-
ters are the same as those in the base case. It is clear from these fig-
ures that the best mixing is achieved for the base case, i.e.,
j ¼ 0:125 and mixing dramatically decreases when j is increased.
Note that the dependence of the quality of mixing on the channel
curvature is recently investigated experimentally by Fries and von
Rohr (2009) using five different micromixers with a fixed length
Fig. 20. The mixing patterns at the exit of the channel as a function of the non-
dimensional corrugation wavelength of the channel, j. (Ca ¼ 0:005;Re ¼ 0:64;
k ¼ 0:014;K ¼ 2:0;g ¼ 0:75; r ¼ 0:1, grid: 1728 � 64.)
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Fig. 21. Effect of the channel geometry on mixing. (a) Intensity of segregation (b) entr
but varying channel width and bend curvature. They also observed
enhanced mixing as the bend turning radius decreases, which cor-
responds to a decreasing j for our setup.

5. Conclusions

The chaotic mixing in the liquid slugs between bubbles moving
through a serpentine channel is studied computationally using the
FV/FT method (Muradoglu and Kayaalp, 2006) in a two-dimen-
sional setting. Scatter plots of tracer particles are used to visualize
the mixing patterns and, following Muradoglu and Stone (2005),
the entropy and intensity of segregation measures are used to
quantify the quality of mixing. Both of the mixing measures are
found to be consistent with each other and with the visual evalu-
ations of mixing for all the cases presented. It is observed that a
chaotic mixing occurs due to recirculation within the liquid slug
as it moves through a winding channel. The effects of the relevant
non-dimensional parameters on mixing are examined. It has been
found that the chaotic advection occurs as long as segmentation is
achieved. In this regard, the capillary number influences mixing
significantly as segmentation occurs only when the capillary
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number is sufficiently small, i.e., Ca 6 0:01 for the present case.
Once segmentation occurs, a further decrease in capillary number
does not affect the quality of mixing significantly. The relative size
of the bubble influences the mixing in a similar fashion. Segmenta-
tion and thus the chaotic mixing occurs within the liquid slug
when the bubble size is larger than the width of the channel, i.e.,
when K P 1. The viscosity ratio is found not to have any significant
influence on the quality of mixing when k 6 1, which is in contrast
with the mixing in a droplet moving through a serpentine channel
(Muradoglu and Stone, 2005) where the viscosity ratio plays a pri-
mary role on the mixing. The mixing is found to weakly depend on
the Reynolds number in the range between Re ¼ 0:64 and Re ¼ 64.
The quality of mixing deteriorates slightly as the Reynolds number
increases. The relative initial distance between bubbles is also
found to be an important parameter influencing the quality of mix-
ing and it is found that the best mixing occurs at about g ¼ 0:75.
Another important geometric parameter is the corrugation wave-
length of the mixing section of the channel. It is found that the
quality of mixing is influenced significantly with the non-dimen-
sional corrugation wavelength and the larger the corrugation
wavelength the better the quality of mixing in the range of
0:125 6 j 6 0:285.

Finally, we note that an important factor influencing the seg-
mentation and quality of mixing within the liquid slug is the axial
dispersion due to leakage through the liquid film between bubble
and the channel wall. Muradoglu et al. (2007) showed that there is
no axial dispersion in the absence of the molecular diffusion when
the channel is straight. However, our numerical simulations indi-
cate that there is significant axial dispersion in the curved channel
even in the absence of molecular diffusion due to the fact that the
liquid film thickness depends on the channel curvature (Murado-
glu and Stone, 2007) and changes periodically as the bubbles move
through a serpentine channel. This issue is a subject of our current
study and will be reported separately in the future.
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